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Assignment 5: Splay Trees and Tries

This problem set explores splay trees and and tries. In the course of doing so, you'll explore static 
optimality from both a theoretical and practical perspective, and will learn about a new data struc-
ture, the weight-balanced tree, with applications to both static optimality and tries. We hope that 
this will give you a much deeper understanding of what we've explored this week!

 

Working in Pairs

We suggest working on this problem set in pairs. If you work in a pair, you should jointly submit 
a single assignment, which will be graded out of 10 points. If you work individually, the problem 
set will be graded out of  9 points, but we will not award extra credit if you earn more than  9 
points.

Due Wednesday, May 7 at 2:15PM at the start of lecture.



 

Problem One: Static Optimality in Theory (3 Points)

Let S = { x , ₁ x , …, ₂ xₙ } be a set where each element has an associated probability pᵢ. Suppose that you 
are drawing a sequence of values from S using the probabilities pᵢ. You and I are communicating over a 
network in which we are only allowed to send symbols drawn from some alphabet Σ. Your goal is to 
send me a string in Σ* describing the sequence you drew from S.

To do so, we agree in advance a function f : S → Σ* called a coding function that assigns to each string 
x  ∈ S a string f(x) called the code word. To send me the sequence of values you drew, you compute the 
code word for each value, concatenate all those strings together, and then send me the overall string. 
Assuming we've chosen the code words f(x) intelligently, I can then decode the stream.

For example, suppose that S = { a,  b,  c,  d,  e,  f } and Σ = {0, 1}. One possible set of code words we 
could use would be the following:

a = 000     b = 001     c = 010     d = 011     e = 100     f = 101

Now, If I receive

011100101000010100

I can decode the message by breaking it apart into blocks of three bits each:

011  100  101  000  010  100

and then inverting the code mapping to get back

d e f a c e

In the above case, all of the code words had the same length. However, there's no reason that this must 
be the case. For example, we could also use these code words:

a = 1    b = 01    c = 001    d = 0001   e = 00001   f = 000001

Now, if I get the message

0001000010011000001

I could split it apart to get the code words back:

0001  00001  001  1  000001

Which then reads off as

d e c a f

Not all coding functions will work, though. For example, consider these code words:

a = 11    b = 00    c = 10    d = 1   e = 0   f = 01

To send the message cafe bbd, you would send me

101101000001

When I receive this message, I might, however, cut it apart like this:

1  0  11  1  00  0  0  01

Which decodes as d e a d b e e f, definitely not the message you intended!



 

We'll say that a coding function is a legal coding function if any coded message sent using that coding 
system can be uniquely decoded back to a single sequence of code words. One way to ensure this is to 
use a prefix code, in which no code word is a prefix of any other code word. If you've seen Huffman 
coding before, Huffman coding is one possible way to create a prefix code for a set of elements, though 
it's not the only way.

There are theoretical limitations to the sizes of the code words used. Given a probability distribution in 
which each element x  ᵢ has probability pᵢ, the Shannon entropy of the distribution, denoted H, is

H =∑
i=1

n
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The entropy of the distribution measures how much information, in bits, is generated by sampling from 
that distribution. At one extreme, if all n elements have probability 1/n of being chosen, then the above 
summation becomes
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So lg  n bits of information are generated by sampling from the distribution. Intuitively, this makes 
sense – there are n possible outcomes, each are equally likely, so we would need lg n bits to write out 
the index of the entry that was generated. At the other extreme, if one element has probability 1 and the 
remaining elements have probability 0, then

H =∑
i=1

n

(−pi lg pi)=∑
i=1

n

0=0

So 0 bits of information are generated. This makes sense because we already knew what element was 
going to be drawn from the distribution.

Shannon's source coding theorem says that if S is a set where each element x  ᵢ has probability p  ᵢ of be-
ing chosen, then for any legal coding function f : S → Σ*, we have

E[|f(xᵢ)|] ≥ H / lg |Σ|

Here, the expectation is taken over a random choice of xᵢ drawn from S using probabilities pᵢ.

Consider an arbitrary BST whose keys are  S and where the access probabilities are p , …, ₁ pₙ. Using 
Shannon's source coding theorem, prove that the expected number of nodes visited in any successful 
lookup on that tree is at least H / lg 3, where H is the Shannon entropy of the access distribution.

Some hints:

1. Write an expression for the expected number of nodes visited when doing a lookup in a fixed 
BST with the given keys and probabilities in terms of the probabilities and the path lengths of 
the nodes.

2. Show how to turn any BST into a legal coding function over { 0, 1, 2 } such that the lengths of 
the code words are closely related to the path lengths in the BST.

3. Connect your results from (1) and (2) together.



 

Problem Two: Static Optimality in Practice (3 Points)

Splay trees have the static optimality property: the amortized cost of a successful lookup in a splay tree 
is O(1 + H), where H is the Shannon entropy of the access probabilities, as long as each key is accessed 
at least once. Your result from Problem One says that this is optimal to within a constant factor, so we 
would expect splay trees to perform well compared to a statically optimal BST. In this problem, you'll 
compare splay trees against another type of statically optimal BST called a weight-balanced tree to see 
whether theory matches practice.

Suppose that you have a set of keys x , …, ₁ x  ₙ and associated positive weights w , …, ₁ wₙ. We'll define 
the weight of a tree to be the sum of the weights of all the keys in that tree. A weight-balanced tree is 
then defined as follows: the root node is chosen so that the difference in weights between the left and 
right subtrees is as close to zero as possible, and the left and right subtrees are then recursively con-
structed using the same rule.  In 1975, Kurt Mehlhorn proved that weight-balanced trees, where the 
weights on each node correspond to the access probabilities, are within a factor of 1.5 of the statically 
optimal BST for those nodes given those access probabilities (pretty nifty!)

There is an O(n log  n)-time algorithm for constructing weight-balanced BSTs. Begin by sorting the 
keys into ascending order and tagging each with their weights. In time O(n), compute the total sum of 
the weights. Then, use the following recursive process:

• Scan from both ends of the array inward,  summing up the weights  as you go, until a node is 
found with the optimal balance between its left and right subarrays. You can detect this by look-
ing for a spot where the absolute value of the weight difference increases; the spot right before 
that is the optimal splitting point.

• Make that node the root of the tree, and repeat this process on the halves of the array.

The runtime of this recursive phase is O(n log n). Intuitively, at each level, the work done is propor-
tional to the smaller of the two subarrays searched. Using reasoning similar to what you saw in the  
decremental connectivity structure from Problem Set Three, you can show that each element is part of a 
smaller array at most O(log n) times, so the total work done is O(n log n).

Using the Java starter code available at

/usr/class/cs166/assignments/ps5/

implement the WeightBalancedTree and SplayTree classes and use the provided driver code to test 
them against one another. You might find your results interesting.

Some advice:

1. Make sure not to recompute the sum of the weights in the subarrays at each level of the recur-
sion, since otherwise the runtime might degrade to Θ(n2) on some inputs. (Do you see why?)

2. Your solutions should not cause stack overflows during searches,  though you don't need to 
worry about stack overflows when initially constructing the trees.



 

Problem Three: Trie Representations (3 Points)

In a trie, each node stores a collection of pointers to child nodes. The performance of the basic opera-
tion on tries and the space efficiency of a trie heavily depend on what data structure is used to represent 
those pointer collections. This problem explores several possibilities and their tradeoffs.

In what follows, let N denote the total number of nodes in a trie and n the number of strings it contains. 
Denote the alphabet of the trie as Σ. When doing a query, let w be the query string. In the case of a suc-
cessor search, let σ(w) denote the successor of string w in the trie.

i. (1 Point) Fill in the table below by writing the time complexities of the specified operations and 
the space complexity of the overall trie assuming that the indicated data structure is used to 
store the child pointers. In the case of a hash table, assume that all hash table operations run in 
their expected, amortized cost of O(1) per operation.

lookup insert delete successor Space

Array of Σ pointers, one for each 
character.

O(|w|) Θ(N · |Σ|)

Red/Black Tree

Hash table
(assume each hash table operation 

runs in its expected runtime)

When filling out this table, you can assume that allocating a block of uninitialized memory of 
any size takes time O(1) and that deallocating a block of memory of any size takes time O(1).

Now, suppose that you have a static trie in which the set of words is fixed. Consider the following rep-
resentation of such a trie: each node in the trie stores its children in a weight-balanced tree (see Prob-
lem Two for details). We set the weight of each BST node to be the number of strings in the subtrie cor-
responding to that node. The space usage of this data structure is the same as in the case of a red/black 
tree, which as you saw in part (i) is much better than the space usage of an array-based trie. Interest-
ingly, however, the choice of a weight-balanced tree significantly improves lookup times.

ii. (1 Point) Suppose that the total weight in a weight-balanced tree is W. Prove that the left sub-
tree and right subtree of a weight-balanced tree each have weight at most 7W / 8.

iii. (1 Point) Prove that any lookup in this representation of a trie requires time O(|w| + log n). Suc-
cessor queries also have this runtime, but you don't need to prove this.

Problem Four: Course Feedback (1 Point)

We want this course to be as good as it can be and would really appreciate your feedback on how we're 
doing. For a free point, please take a few minutes to answer the course feedback questions available at 
https://docs.google.com/forms/d/1hNeZbZRVUDUpnI5Fa-sEKDU1pYF4Bbpzfoz_BzUL85Q/viewform.  If you are 
submitting in a group, please have each group member fill this out individually.

https://docs.google.com/forms/d/1hNeZbZRVUDUpnI5Fa-sEKDU1pYF4Bbpzfoz_BzUL85Q/viewform

